Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year

Second Semester - Analysis IV

Midterm Exam Maximum marks: 40 Date: February 27, 2018 Duration: 3 hours

Answer any four, each question carries 10 marks, total marks: 40

- 1. (a) Let \mathcal{A} be an algebra of complex-valued continuous functions on a compact metric space X that separates points of X and nowhere vanishes on X. If \mathcal{A} is self-adjoint, prove that \mathcal{A} is dense.
 - (b) Prove that C[0,1] has no open set whose closure is compact (Marks: 5).
- 2. Let E be a set of continuous functions on a compact metric space. Prove that \overline{E} is compact if and only if E is equicontinuous and pointwise bounded.
- 3. Let f be a continuously differentiable 2π -periodic function and s_n be the n-th partial sum of the Fourier series of f.
 - (a) Prove that $s_n \to f$ uniformly (Marks: 5).

(b) Further if $\int_{-\pi}^{\pi} f(x)dx = 0$, prove that $||f'|| \ge ||f||$ and the equality occurs if and only if $f(x) = a\cos x + b\sin x$ where $||f||^2 = \int_{-\pi}^{\pi} |f|^2$, $||f'||^2 = \int_{-\pi}^{\pi} |f'|^2$.

4. (a) Prove Riemann-Lebesgue Lemma.

(b) Prove using Fourier series that $\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (Marks: 5)?

5. (a) Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π -periodic function and $s_n(x)$ be the *n*-th partial sum of the Fourier series of f at $x \in \mathbb{R}$. Prove that

$$\frac{1}{n}\sum_{i=0}^{n-1}s_i(x) = \frac{1}{2n\pi}\int_{-\pi}^{\pi}\frac{f(x+t) + f(x-t)}{2}\frac{\sin^2\frac{nt}{2}}{\sin^2\frac{t}{2}}dt.$$

(b) Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π -periodic function such that $f(x) = \cos x$ for all $x \in [0,\pi]$. Discuss the convergence of $s_n(x)$ for all $x \in (0,\pi)$ (Marks: 4).

6. (a) Prove that the Fourier series of a bounded 2π -periodic function that is monotonic on $[-\pi,\pi)$ converges.

(b) Let ϕ be a step function and $\phi(x) \sim a_0/2 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$. Prove that there is a constant C such that $|a_n| \leq C/n$ for all $n \geq 1$ (Marks: 4).